Wood Structure and Environment (Springer Series in Wood Science)

Wood Structure and Environment (Springer Series in Wood Science)

Fritz Hans Schweingruber

Language: English

Pages: 283


Format: PDF / Kindle (mobi) / ePub

The primary aim of Wood Structure and Environment is to reveal the hidden ecological richness in stems and roots from trees, shrubs and herbs. The detailed, lucid text will inspire researchers to consider the anatomic microcosm of wood plants and use it as a retrospective source of information, solving problems related to ecophysiology, competition, site conditions, population biology, earth science, wood quality and even human history.



















often discontinuous (Fig. 4.22a). Death occurred in the winter (Fig. 4.23), after a 1-year growth reduction. Example 3: Dead Cembran pine branches (Pinus cembra) with a growth reduction phase, prior to death, that lasted several years (Fig. 4.22). 63 tion. In this way, collarlike callus margins are formed. The beginning of the scarring-over process can be determined and dated in transversal sections on the basis of a change in fiber direction and structural changes (Fig. 4.26 and double

less well known, adventitious roots die during the exploitation of new resources in the soil. Dead sprouts and roots are separated from living tissue by barriers and eventually become overgrown.  Fig. 4.63. Secondary sprouts and roots. a Adventitious shoot, originating from an uninjured stem. Common beech, Fagus sylvatica. Birmensdorf, Switzerland. b Adventitious shoot, arising from a wound callus. Silver birch, Betula pendula. Aurigeno, Ticino, Switzerland. c Adventitious roots, arising from

or individual are determined by short- cases, it is, however, not clear where exactly these term, extreme events and long-term, unfavorable eco- limits are. logical conditions. Here, I concentrate on plants which Missing and wedging tree rings, as well as individhave survived short-term extreme events on perma- ual reactions to leaning positions, render dendrochronently unfavorable sites. nological cross-dating more difficult. However, age From a dendrochronological point of view, the

compression wood in its earlywood, before an intensive period of compression wood formation started which continued to the tree-ring boundary ceae). Very often, the fiber cell walls are just thicker on the tension side, as for example in Sorbus sp. 6.2.2 Tension Wood in Angiosperms Typical tension wood fibers are also called gelatinous fibers (Jutte 1956). There is a gelatinous, virtually unlignified layer within the secondary or tertiary wall of libriform fibers (Fig. 6.9). Gelatinous

that still have a few needles produce callus tissue at the tip of the stub (Fig. 7.14). • An irritation from the wound causes the formation of resin ducts (Fig. 7.13). Little is known regarding the natural death of young, densely grown trees, whose stems, however, survive for a long time owing to root anastomoses. In the example illustrated here, many 2–3-m-tall spruce trees, with a diameter of 5–10 cm, grow in the shade of a dense canopy of large spruces. These small, severely suppressed trees

Download sample